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Abstract

In this paper an active flutter suppression problem is studied for a thin airfoil in un-

steady aerodynamics. The mathematical model of this system is infinite dimensional,

because of Theodorsen's function which is irrational. Several second order approxima-

tions of Theodorsen's function are compared. A finite dimensional model is obtained

from such an approximation. We use H °_ control techniques to find a robustly stabi-
lizing controller for active flutter suppression.

1 Introduction

In this paper an active flutter suppression problem is studied for a thin airfoil in unsteady

aerodynamics. Because of the interaction between the structure and the flow, flutter

(dynamic instability) occurs at a certain flow speed. Therefore, it is important to de-

sign active feedback controllers stabilizing the airfoil. A r_bustly stabilizing feedback

compensator is obtained from the H _ control theory. This theory gives us the largest

amount of uncertainty (due to neglected aerodynamics) which can be tolerated in

the problem of active flutter suppression.

In general, mathematical models for airfoils in unsteady aerodynamics are linear

time invariant infinite dimensional systems. The basic difficulty in such systems is
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to compute the aerodynamic loads due to unsteady flow. The simplest models (in

the frequency domain) for the unsteady aerodynamics contain Theodorsen's function

as the infinite dimensional part. There are several techniques for designing feedback

controllers directly from the infinite dimensional airfoil model see e.g. [1]. In this

method the controller itself is infinite dimensional, and hence one has to approximate

it in order to obtain an implementable finite dimensional controller. Another method

is to approximate the infinite dimensional part of the system and design a finite

dimensional controller from the finite dimensional approximate model. In this paper

we consider the second method, and design a robust controller, which stabilizes not

only the finite dimensional model, but also the infinite dimensional model. The main

tool used here in the robust controller design is the H °° control theory.

In the next section we define a mathematical model for a thin airfoil. Several

second order approximations for the Theodorsen's function are compared in Section

3. In Section 4 we present a robust stabilization algorithm for flutter suppression in

the presence of unmodeled aerodynamics. Concluding remarks are made in the last

section.

2 A mathematical model for the airfoil

We consider the following mathematical model (see e.g.

shown in Figure 1,

Mfi,(t) + B,_(t) + K,z(t) = 1----F(t) + eu(t),
ms

[1], [2]), for a thin airfoil

(1)

where z(t) = [h(t),a(t),_(t)] r, and u(t) represents the control input.

-b o ÷b..........................................

Ro_ation axis
|

Figure 1: Thin airfoil

180



The matrices Ms, Bs, Ks and G are in the form

MS _-- x_ r2 r_ + x_(e--a)

0 0

2 2 0Fo aJc_

0 2 2
r _o _

, Bs Iio o0 0

0 2r_(_

where all the constants are related to the geometry and physical properties of the
structure.

In order to apply Laplace transform techniques, we will assume that z(t) = 0 for

t _< 0. This corresponds to the indicial problem (see e.g. [1], and [3]). Aeroelastic

loads are represented by F(t)= [P(t),M_(t),Mp(t)]T. We can represent F(t) as

F(t) = Maii(t) + B_k(t) + Kaz(t) + Fc(t) (2)

where Fc(t) is the "circulatory" part of F(t). The matrices M_, B_ and K_ can be

computed in terms of the problem data [9] [8]

I _r -rrba -Tab l
M_ = -pb 2 -arb rrb2(_ + a 2) -(Tr + (c- a)T1)b 2

-Tab -(T, + (c- a)T_)b 2 -T3b2/rr

B_ = -pb2V
O ¢r0 rr(0.5 - a)b

0 (T4(a - 0.5) - T_ - 2Tg)b
(T_ - r_ - (_ - _)T_ + 0.5T,_)b

-T4Tlab/27r

Ii°K_ = -pb:V 2 0

0
o ]I"4+7'1o

(Ts- r4rlo)/rr

where Ti's are Theodorsen's constants, see e.g. [9].

Using Theodorsen's formulation, F_(t) can be expressed in the frequency domain

as (see e.g. [9] pp. 395-396,or [8] pp. 26-28)

A(s) = C(s)(B¢, + sB_2)2(s) (3)
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where s is the Laplace transform variable, ^ represents the Laplace transformed ver-

sion of a time signal, C(jw) is the Theodorsen's function, and Bcl,Bc2 are con-

-27r 1
2rcb(a + 0.5) ,

Tl_b
stant matrices given by Be1 = blcl and Be2 = blc2 where bl = pVb

cl =V[0 1 Tlo/r],andc2=[1 b(0.5-a) bT_l/2rc].

Suppose that the measured output for feedback is

v(t) := c,z(t) + c s(t).

Then, taking the Laplace transforms of (1) and (2), and then using (3) we obtain a

transfer function from u to Y, denoted by P(s):

_(s) Co(sI-A)-'Bo

_(s)- P(s)= l_Co(si_m)__B a C(s)

where C(s) is the Theodorsen's function, and

03×3A = (M,- M.)-'(K_ - K,)

Co = [Cl c2] , B1 =

(4)

I3x3 1
(M.- Ma)-l(Ba- Bs)

03xl ]Bo = (M_- M:)-_G "

Note that the plant can be seen as a feedback system whose feedback path consists

of the aerodynamics represented by Theodorsen's function, as shown below.

1<_2

f

Figure 2: Structure of the plant

The function C(s) is irrational, and in practice it is approximated by a low order

rational function, say C,(s). This leads to an approximate model for the plant to be

controlled

Co(sI - A)-IBo

P:(s) = 1-Co(sI-A)-aB, C_(s)"
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In Section 4 we will see that a rational feedback controller K_, which stabilizes

P_, stabilizes the original infinite dimensional model P if and only if the H °° norm
of the " " "

weighted closed loop transfer function is less than the inverse of the L _°
approximation error

IIC- c<,lloo:: sup Ic(jw) - Ca(j,z)[.
OJ

Therefore, we have a better chance of stabilizing P by a rational K_ if we can make

the L °° error in Theodorsen's function approximation. In the next section we compare

the L °° errors of several second order approximates of the Theodorsen's function.

3 L °° Approximation of the Theodorsen's func-
tion

As mentioned above, the Theodorsen's function, C(s) which appears in the feedback

path of the plant model, is infinite dimensional. For controller design (synthesis) and

simulation (analysis) purposes we would like to use a finite dimensional approximate

C_(s) instead of the exact irrational C(s), which is given by (see e.g. [9])

C(jaJ) = Re[C(jw)] + jIm[C(j_,,)] (5)

where

Re[C(jw)] = J,(w)(J,(o.,) + Yo(w)) + }i (,.,,)(],i(_) - do(_))

(J,(o.,) + jo(w))2 + (}._ (.,) _ jo(.,))2

Im[C(jo.,)]= (Ya(-')Yo(_)+ J,("_)Jo(w))
(a,(_) + Jo(._))_+ (y,(_) _ jo(_))_"

(J0, J1, Y0, I"1 are the Bessel functions). Several second order approximations of (5)

can be found in the literature, see for example [8]. These approximations are in the
form

(1 + rls)(1 + r2s)

C_(s) = (1 4- ras)(1 + r4s) (6)
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where rl, r2, r3, r4 are positive real constants to be chosen. For example, the following

sets of numerical values are proposed by R. Jones, W. P. Jones and R. L. Moore

respectively

rl = 18.6, r_=1.97, r3=21.98, r4=3.33 (7)

rl =20.62, r2=1.85, 73=24.39, 74=3.125 (8)

rl =10.61 , r2=1.774, 73=13-51 , 74=2.744 . (9)

For each of these sets of numbers the error function IC(jw) - Ca(jw)l is plotted in

Figure 3.
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Figure 3: Error function for R. Jones, W. P. Jones and R. L. Moore

approximates of the Theodorsen's function .

As we can see from this figure, R. Jones's approximation is the best one (in the L °_

norm) among the three second order approximates listed above. In different norms,

other approximations may be better than the one which is best in L _ norm. But

since we are going to use H °_ control techniques (in order to guarantee the robustness

of the controllers derived from the approximate plant), we will need an error bound

in the L °° norm. Below we will show that it is possible to improve the L _ error of

the R. Jones approximation by fine tuning the values of 71,. •., v4.
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We found that the valuesof

Va =18.57, T2=2.057, r3=21.93, r4=3.446 (10)

give a function Ca(jco) whose magnitude is "close" to being a Chebyshev approxima-

tion for the magnitude of C(jco), (i.e. the error function I [C_(flo)[- [C(jw) I [, shown

in Figure 4, "nearly" satisfies the necessary and sufficient conditions for IC,_(jco)l to

be a Chebyshev approximation of [C(jco)[).

0"0121

0.01

0.008

0.006

0.004

0.002

-3

/

Figure 4: IlC,,,jco)l- IC(jco)[] versus log(co)

We have obtained the above values for ri's by slightly modifying the approximation

scheme proposed in [11]. We would like to determine if this choice for C_ is a "good"

L _ approximate of C. For this purpose we first point out the following relationship

between the L °_ error and the error in magnitude and phase functions:

Lernma: Let ¢(w) and ¢_(co) denote the phase of C(jco) and C_(jco) respectively, i.e.

C(jco) = [C(j_)leJ¢(_) Co(jco) = ICo(j_)leJ¢o(_).

Then we have

(]])
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Proof: By definition following equalitieshold

= I IC(j_)ld(_(_)-_°(_))- Ic(j_)l + Ic(j_)l- Ico(J_)l /

= I ic(j_)l(d(¢(_)-¢o(_)) - 1) + (Ic(j_)l- Ic_(j_)l)I

On the other hand, for any 0 C [-Tr , _r] we have

leJ°-11 <_ I01.

Hence we conclude that

IC(j_)- C_(j_)I < I IC(jw)l- IC'(jw)[ t
[]

This lemma says that the Chebyshev approximation error 2 for the magnitude

function plus the corresponding "normalized" phase error is an upper bound for the

overall L _ error. We also deduce from this lemma that in order to get a good L _

error bound we may try to develop an approximation scheme such that whenever the

magnitude error is large, the normalized phase error is small and vice versa. However,

if we obtain C_ from the Chebyshev approximate of IC(j_)t, this automatically fixes

the normalized phase error function, which does not necessarily satisfy the above

mentioned nice property. However, we will see from the following numerical example

that this property is satisfied for the second order approximation we have proposed by

(10). For Ca determined from (10), the two terms in the right hand side of (11), as well

as the function in the left hand side of (11 ), are shown in Figure 5. It is quite surprising

that the normalized phase error function alternates with the magnitude error function,

2What we mean by Chebyshev approximation for the magnitude function is the following: Sup-

pose IC(j,_)I is known, and we want to approximate the real valued function in the L°¢ norm by a

function ICa(j_)l; the problem is to find a real rational Co(s) (whose order is fixed) achieving the

smallest Chebyshev error

sup I,C(ja_)'- 'Ca(ja_)t I"
taJ

In the text we use the term L_ approximation for the approximation of the complex valued function

C(flo), and we use the term Chebyshev approximation for the approximation of the real valued

function IC(jw)l.
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i.e. whenever the first term is large the second term is small and vice versa. Also

interesting i-s the fact that for this choice of C'_ the function IC(j_a) - C_(j_)l is an

envelope of the two functions appearing in the right hand side of (11).

0.012

o.o_F /", ,_' 'x -- - "_" "_

0.006

0.004

0- ; i/i i:i,!i/i/0: ; , ......
-3 -2.5 -2 - 1.5 - 1 -0.5 0 0.5 ! 1.5 2

Figure 5: Relations between the L _ error function and

the magnitude error and normalized phase error functions.

The above observations can be generalized as follows:

Conjecture:

Let F(s) E H _ be a minimum phase and positive real function (possibly

irrational), and let F,(s) E H _° be a fixed order real rational function

approximating f(s). If IF,(j,:)I is the best Chebyshev approximation of

IF(j,:)I, then F,(s) is the best L _ approximate of F(s). []

4 Active flutter suppression

Let us consider the thin airfoil model obtained in Section 2. When flutter occurs the

plant P(s) is unstable, and we would like to design a feedback controller stabilizing

the closed loop system, shown in Figure 6. In our design we will use C, given by the

numerical values in (10). This gives us an approximate plant model Po. A robustly
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stabilizing finite dimensional controller K.(s) will be obtained from P., and it will

be shown that under a certain condition, this controller stabilizes the original infinite

dimensional airfoil model, with a certain robustness level.

_Y

Figure 6: Feedback control system

Consider the approximate plant

Co(sI - A)-IBo

P_(s) = 1 - Co(sI - A)-'Ba C.(s)"

We can find rational transfer functions N1, N2, M E H _ such that

No(s)

Co(sI- A)-IBo- M(s)
and

N_(,)
Co(sI- A)-'Bx - M(s)"

Therefore we can express P and Pa in the form

No(S)
Pa(s) = M(s)- N,(s)C.(s)

No(_)
P(s) = M(s)- _1(8)C(s) "

Thus, P and P. differ in their denominator, in the sense that

Np(s) Np(s)
P(s)- _ and Po(s)=-Mp_(s)

where Np(s) = No(s), Mp(s) = M(s)- N,(s)C(s), Mp_(s)= Mp(s) + AM(S), and

AM(S) = Na(s)(C(s) - C_(s)).
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Let e, be an upper bound of the L _ approximation error for the Theodorsen's func-

tion, i.e.

IIC- <,11 o< Ca,

(note that for the choice of Ca given by (10) we can choose ea = 0.012). Then from

[4], [5] and [12] we can deduce that a controller I(a stabilizing P_ and achieving an

H °° performance

"7(K_,) = ]lNiMp-_,'(1 + PaK_,)-'lloo (12)

stabilizes the infinite dimensional plant P if a

1
_/(K_) < --. (13)

Ca

One proves this as follows:

Np if the roots of
Mp_-AM

A controller Ka stabilizes all plants of the form Pa =

Np( ) =0
i -FKa(8)Mpa(S)- AM(8)

are in the left half plane. This condition is satisfied if

LA "= 1--AM_[pa'(1 -[- PaKa) -1

is invertible in H °°. Since II/xMll < <lNl(j,o)l and Ka stabilizes Pa (meaning that

(1 + P, Ka) -1 C H°¢), a sufficient condition for La to be invertible in H °° is (13).

In fact, if K, stabilizes P, and satisfies (13), then it stabilizes P with a certain

robustness level, see e.g. [7]. The controller K °pt, which minimizes 7(Ka) over all

controllers stabilizing P,, has the best chance of satisfying (13). Note also that we

increase our chances of satisfying (13) by decreasing ca.

An interesting question about the stabilization of P by Ka is: How much can we

increase e, so that

_za := inf "/(Ka) <_ __1 ?

I(_ stabilizin9 Pa _a

aWe would like to point out that the perturbation in the plant is in the denominator only, so the

term 7(Ka) is slightly different than the one in [5] and [12], where both numerator and denominator

perturbations are considered.
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The answer to this question gives the largest L _ error we can tolerate in approxi-

mating C(jw) so that we can still find an active feedback controller stabilizing the

original plant. The problem of minimizing-/(K_) over all controllers K_ stabilizing Pa

is a special case of a one block H °_ optimal control problem, and can be solved easily

by finding the singular values and vectors of a Hankel whose symbol is a rational

function, or by using the Nevanlinna Pick interpolation, see e.g. [4] and references

therein.

5 Concluding remarks

An active controller design method is illustrated for a thin airfoil. The model P for

this system is infinite dimensional. By approximating the infinite dimensional part

of the plant we have obtained a finite dimensional approximate model P_. We have

illustrated that using a Chebyshev approximation for the magnitude function IC(j_z)l

we obtain a finite dimensional approximate of C(jw) which is nearly optimal in the

L °_ norm.

A finite dimensional controller K °pt can be obtained by solving the one block H _

problem posed in Section 4. In the H _ problem formulation we used the finite dimen-

sional approximate model P_. We have shown that if the H _ optimal performance %

is less than the inverse of the L _ approximation error of the Theodorsen's function,

e_, then the controller K_ stabilizes not only the finite dimensional model P_, but

also the original infinite dimensional model P.
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